skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mahan, Kevin_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Seismic anisotropy is controlled by aligned rock‐forming minerals, which most studies attribute to solid‐state shear with less consideration for magmatic fabric in plutonic rocks (rigid‐body rotation of crystals in the presence of melt). Our study counters this traditional solid‐state bias by evaluating contributions from fossil magmatic fabric. We collected samples from various tectonic settings, identified mineral orientations with electron backscatter diffraction and neutron diffraction, and calculated their bulk rock elastic properties. Results indicate that magmatic fabric may lead to moderate to strong anisotropy (3%–9%), comparable to solid‐state deformation. Also, magmatically aligned feldspar may cause foliation‐perpendicular fast velocity, a unique orientation that contrasts with a fast foliation typical of solid‐state deformation. Therefore, magmatic fabric may be more relevant to seismic anisotropy than previously recognized. Accordingly, increased considerations of magmatic fabric in arcs, batholiths, and other tectonic settings can change and potentially improve the prediction, observation, and interpretation of crustal seismic anisotropy. 
    more » « less